Гидравлика основные понятия и определения

Что такое гидравлика? Определение и понятие

Гидравлика основные понятия и определения

Гидравлические механизмы относятся к старейшим системам, применяемым в практической инженерии. Сам по себе принцип механизированного действия постепенно утрачивает актуальность, поскольку его вытесняют более технологичные приводные средства.

Но в силу ограниченности возможностей интеграции новых и более дорогих решений, во многих сферах сохраняет свои позиции и традиционная механика.

Что такое гидравлика в современном контексте эксплуатации? Это инфраструктура, которая задействуется в машинах, конструкциях и сооружениях, обеспечивающая достаточное усилие для приведения в действие функциональных узлов и агрегатов.

Базовое определение гидравлики

С точки зрения науки, гидравлика – это раздел знаний, освещающий законы движения и равновесия жидкостей. Водная среда в тех или иных формах является главным аспектом изучения в этом направлении. Кроме теоретических исследований ученые занимаются и экспериментальными испытаниями, результаты которых формируют основу для решения задач прикладной инженерии. Научные работы посвящаются закономерности движения воды по трубопроводным каналам, в речных руслах и гидромашинах.

Но для полного понимания, что такое гидравлика в научном контексте, нельзя обойтись и без смежных дисциплин, инструментарий которых затрагивается в ходе исследования. К таким можно отнести физику, математику и механику. Также выделяется два направления изучений гидравлики – в динамическом и статичном контекстах. Гидродинамика затрагивает вопросы кинематики воды как таковой, а гидростатика больше ориентируется на законы взаимодействия жидкостей с другими средами и телами.

Все же известность гидравлики как раздела науки не так широка по сравнению с ее производными в практической сфере. На тех же прикладных знаниях базируются проекты инженерных систем – например, одним из старейших продуктов гидравлики является акведук. В наши дни законы энергии жидкостей ложатся в основу разработок канализационных систем, поршневого оборудования, водоснабжения и т. д.

В большинстве случаев работа гидравлики такого типа организуется как двигательная сила для приведения в действие обслуживаемых агрегатов. Классическим примером являются гидромашины.

В целом можно вывести такое определение инженерной гидравлики – совокупность элементов механической конструкции, устройство которой предполагает использование жидкости в качестве активной природной среды. Но это не означает, что вода является источником усилия.

Она лишь транслятор энергии, которая ей придается другими механизмами, которые, в свою очередь, активизируются посредством электродвигателей и силовых агрегатов на жидкостном или твердотельном горючем.

Типы гидравлических конфигураций

Рабочий цикл гидромашины зависит от схемы, по которой циркулирует вода. Этот контур как раз и обуславливает момент работы воды, в процессе которого она приобретает энергию от двигателя и передает ее другим компонентам системы. В этом контексте можно выделить два типа циркуляционных конфигураций – с открытым и закрытым центрами.

В первом случае гидрораспределитель жидкости в процессе работы поршня обеспечивает двойной выход. То есть показатели давления меняются в зависимости от текущего положения поршня, а жидкость может отправляться в рабочий цикл или обратно в клапан. Ее перемещение регулирует связка поршня и клапана.

Для понимания принципа работы закрытой системы надо вернуться к определению того, что такое гидравлика, и как она взаимодействует с силовыми агрегатами. Поскольку гидравлика является лишь инфраструктурой, которую организуют функциональные узлы, обслуживающие жидкость, то вполне логично, что энергия рабочей среды может полностью зависеть от действия технической оснастки. В данном случае эту задачу выполняют насосы и клапаны, полностью замыкающие контур циркуляции.

Классификация по видам приводов

Различаются системы, обеспеченные нерегулируемым и регулируемым приводными механизмами. Типовым считается нерегулируемый гидропривод, в котором показатель давления насоса всегда соответствует установленным значениям. Зафиксированные данные обязательно должны быть выше, чем предельный уровень нагрузочного давления. То есть создается планка показателя, на которую равняется насос.

К недостаткам данного механизма относят большие потери в мощности, так как постоянное поддержание высокого давления при незначительных нагрузках нерационально. По такой схеме, к примеру, иногда выполняется гидравлика экскаватора, управляющая опорными элементами.

Поскольку на эту функцию ложится высокая ответственность с точки зрения безопасности, то производители жертвуют избытками мощностной отдачи. Однако в одном и том же экскаваторе нерегулируемый привод опор может дополняться регулируемой системой, которая будет оптимизировано отвечать за работу навесного оборудования.

Данный тип гидропривода предусматривает снижение давления насоса и его балансировку за счет клапанов и компенсаторов с направленным действием.

Гидравлические аккумуляторы

Применяются механизмы извлечения энергии жидкости и в аккумулирующих устройствах. Такие системы называются гидроемкостными и генерируют энергию воды, которая в момент работы находится под давлением. При этом сам аккумулятор чаще всего является составной частью механического гидропривода.

Читайте также  Определение слова пожар

Существуют разные типы таких устройств – в частности, пневматические и пружинные. В промышленности используется и аккумулирующая гидравлика высоких давлений, на мощностях которой осуществляются простые, но требовательные к нагрузкам манипуляции с грузами. Независимо от типа гидроаккумулятор должен поддерживать давление на определенном уровне, вместе с этим исключая утечки и сглаживая вибрации за счет демпфирующего эффекта.

Машины на гидравлических системах

Наиболее распространены такие механизмы в машинах с навесным оборудованием – в тех же экскаваторах, тракторах и уборочных автомобилях. Широко применяют гидравлику в своих моделях конструкторы Минского тракторного завода (МТЗ).

Стандартная комплектация, которая используется в этих тракторах, включает насосы, гидрораспределитель, цилиндры и трубопровод.

Рабочий цикл, который обеспечивает гидравлика МТЗ, можно представить так: жидкость поступает от емкости к насосам, переправляется к распределителям, входит в поршневую группу и возвращается в бак.

На этапе перехода от гидрораспределителей к цилиндрам к регуляции процесса подключается оператор оборудования, который посредством рычагов контролирует поступление жидкости в поршневые группы в зависимости от текущих задач.

Профилактическое обслуживание обычно сводится к операциям смазки отдельных деталей и компонентов гидравлической системы. В процессе осмотра ответственное лицо также выявляет признаки износа, деформации и повреждения. Как правило, ремонт гидравлики сводится к замене гильз поршней, штоков и крышек. В регулярном порядке обновляются расходники в виде уплотнительных колец.

Заключение

Гидравлика – это один из простейших способов получения механического усилия доступными средствами. Для понимания, что такое гидравлика, и какую пользу она приносит рядовому пользователю, можно привести в качестве примера насосное оборудование. Садовые станции перекачки воды действуют на принципах гидравлической инженерии, затрачивая минимум энергии. На более высоком уровне по аналогичным схемам работают компрессорные установки и пневматический инструмент.

Источник: http://fb.ru/article/315855/chto-takoe-gidravlika-opredelenie-i-ponyatie

Основы гидравлики



Гидродинамикой называют раздел гидравлики, в котором изучается движение жидкости, обусловленное действием приложенных к ней внешних сил.

Состояние реальной движущейся жидкости в каждой ее точке характеризуется не только плотностью и вязкостью, но и скоростью частиц жидкости, а также гидродинамическим давлением.

Под частицей в гидродинамике понимают условно выделенный объем жидкости, который настолько мал, что можно пренебречь изменением его формы при движении.

При изучении законов движения реальной жидкости необходимо учитывать ее вязкость, что усложняет решение задач гидродинамики, поэтому рассмотрим вначале уравнения движения идеальной жидкости, а затем внесем в них поправки, учитывающие свойства реальной жидкости.

Основным объектом изучения гидродинамики является поток жидкости, под которым понимают движение массы жидкости, ограниченной полностью или частично какой-либо поверхностью (поверхностями). Ограничивающая поверхность может быть твердой (стенки труб, берега и дно рек, каналов и т. д.), жидкой (граница двух жидкостей с разными физическими свойствами) и газообразной (например, граница между поверхностью жидкости и атмосферой и т. п.).

Движение жидкости может быть установившимся (стационарным) и неустановившимся (нестационарным). Установившимся называют движение, при котором давление и скорость жидкости в любой точке занятого ею пространства с течением времени не изменяются. При неустановившемся движении в каждой точке пространства, занятом жидкостью, скорость и давление изменяются с течением времени.

Примером установившегося движения может послужить истечение жидкости из сосуда с поддерживаемым постоянно уровнем через коническую трубку (см. рис. 1). Скорость движения жидкости в разных сечениях трубки будет различаться, но в каждом из сечений эта скорость будет постоянной, не изменяющейся во времени.

Если же в подобном опыте уровень жидкости в сосуде не поддерживать постоянным, то движение жидкости по той же конической трубке будет иметь нестационарный (неустановившийся) характер, поскольку в сечениях трубки скорость не будет постоянной во времени (будет уменьшаться с понижением уровня жидкости в сосуде).

Движение жидкости может быть равномерным и неравномерным. Равномерным называют движение, при котором скорости в сходственных точках двух смежных сечений потока жидкости равны между собой. В противном случае движение неравномерное.

Если обратиться к предыдущему опыту с сосудом и конической трубкой, то можно заметить, что истечение жидкости через коническую трубку в обоих случаях (с постоянным и переменным уровнем в сосуде) равномерным не будет.

Коническая трубка имеет непостоянное сечение, и скорость жидкости при движении по ней будет непрерывно изменяться.

Если заменить в этом опыте коническую трубку цилиндрической, то движение жидкости в ней будет равномерным.

Различают напорное и безнапорное движение жидкости. Если стенки полностью ограничивают поток жидкости, то движение жидкости называют напорным (например, перемещение жидкости по полностью заполненным трубам).
Если же ограничение потока стенками частичное (например, движение воды в реках, каналах), то такое движение называют безнапорным.
Напорные потоки иногда называют сплошь заполненными, а безнапорные – открытыми руслами.

Для того чтобы движение жидкости можно было считать полностью определенным, необходимо знать распределение величины и направления скорости частиц в потоке, а также зависимость этого распределения от времени.

Читайте также  Мансардный этаж определение по СНИП

Направление скоростей в потоке характеризуется линией тока.
Линия тока – воображаемая кривая, проведенная внутри потока жидкости таким образом, что скорости всех частиц, находящихся на ней в данный момент времени, касательны к этой кривой (см. рисунок).

Линия тока отличается от траектории тем, что последняя отражает путь какой-либо одной частицы за некоторый промежуток времени, тогда как линия тока характеризует направление движения совокупности частиц жидкости в данный момент времени.

При установившемся движении линии тока совпадает с траекториями движения частиц жидкости.

***



Если в поперечном сечении потока жидкости выделить элементарную площадку ΔS и провести через точки ее контура линии тока, то получится так называемая трубка тока (см. рисунок). Жидкость, находящаяся внутри трубки тока, образует элементарную струйку. Поток жидкости можно рассматривать как совокупность всех движущихся элементарных струек.

Живым сечением элементарной струйки называют поверхность, нормальную (перпендикулярную) к вектору скорости, т. е. к линии тока. Скорость движения частиц жидкости во всех точках каждого живого сечения элементарной струйки можно считать одинаковой ввиду незначительных размеров сечения, а сами сечения по той же причине можно считать плоскими.

Живое сечение потока определяют как сумму живых сечений элементарных струек, из которых он состоит. Следовательно, живое сечение потока представляет собой поверхность, во всех точках которой скорости частиц жидкости нормальны к элементам этой поверхности.

Следует отметить, что живое сечение может иметь форму плоской поверхности лишь для идеальной жидкости, в общем случае (для реальных жидкостей) оно имеет форму сложной криволинейной поверхности, т. е.

скорости частиц потока жидкости распределены в любом его живом сечении неравномерно.

Линию соприкосновения жидкости с твердыми стенками, ограничивающими поток в данном живом сечении, называют смоченным периметром (см. рисунок). Отношение площади живого сечения потока S к длине смоченного периметра χ называют гидравлическим радиусом потока жидкости:

R = S/χ.

Для труб круглого сечения, заполненных жидкостью, гидравлический радиус определяют по формуле:

R = d/4.

Аналогично определяют гидравлический радиус в трубах других сечений:

для эллиптических труб с осями a и b:

R = ab/[2/3(a + b) — √ab];

для трубы в виде равностороннего треугольника со стороной a:

R = a/4√3;

для трубы в виде прямоугольника со сторонами a и b:

R = ab/2(a + b);

для квадратной трубы со стороной a:

R = a/4.

Объем или масса жидкости, протекающей через живое сечение потока в единицу времени, называют объемным (Q) или массовым (m) расходом жидкости.
Объемный расход жидкости Q измеряется в м3/с или л/с, массовый расход m – в кг/с. Объемный расход связан с массовым расходом зависимостью Q = m/ρ.

Плотность жидкости может быть различной в разных участках потока, и даже в разных точках живого сечения, например, из-за неравномерности распределения температуры. В общем случае непостоянной является и скорость в различных точках живого сечения потока: в центре потока она обычно больше, а у стенок, ограничивающих поток, — меньше (вплоть до полной остановки частиц).
В связи с этим вводят понятие средней скорости потока, которую определяют, как отношение расхода к площади живого сечения:

v = Q/S,   откуда   Q = vS.

***

Режимы движения жидкости и число Рейнольдса



Олимпиады и тесты

Источник: http://k-a-t.ru/gidravlika/5_gidrodinamika/index.shtml

Решение задач по гидравлике

Цена на решение задач по гидравлике — 150 руб.

Возможно решение задач по гидравлике онлайн (во время экзамена).

Заказать решение           Способ оплаты

Определение гидравлики и краткая история ее развития

Гидравликой называется прикладная наука, занимающаяся изучением законов покоя и движения жидких тел и рассматривающая приложения этих законов к решению конкретных технических задач.

Практическое значение гидравлики весьма велико, так как она представляет собой основу для инженерных расчётов во многих областях техники и является базой для ряда специальных дисциплин: гидротехники, гидравлических машин (насосы и турбины), водоснабжения и канализации, осушения и орошения, водного транспорта, нефтяного дела и т. д.
Гидравлика — одна из самых древних наук в мире.

Ещё в глубокой древности, задолго до нашей эры, с первых шагов своего исторического развития, человек был вынужден практически заниматься решением различных задач гидравлики. Об этом говорят результаты археологических исследований и наблюдений, которые показывают, что ещё за 5000 лет до нашей эры в Китае, а затем и в некоторых других странах древнего мира уже существовали оросительные каналы и были известны некоторые простейшие устройства для подъёма воды.

Во многих местах сохранились также остатки водонапорных и гидротехнических сооружений (водоводы, плотины, акведуки), свидетельствующие о весьма высоком уровне строительного искусства в древнем мире. Однако никаких сведений о гидравлических расчётах этих сооружений не имеется, и надо полагать, что все они были построены на основании чисто практических навыков и правил.

Первые указания о научном подходе к решению задач гидравлики относятся к 250 году до нашей эры, когда Архимедом был открыт закон о равновесии тела, погружённого в жидкость. В дальнейшем, однако, на протяжении последующих более чем полутора тысячелетий гидравлика не получила сколько-нибудь заметного развития.

Читайте также  Пожарный водоем определение

В эту эпоху, характеризовавшуюся общим застоем в науке и культуре, были не только утеряны первые элементы знания, но и в значительной степени забыты практические навыки решения задач гидравлики. И только в XVI—XVII веках, в эпоху Возрождения, когда появились работы Стевина, Леонардо да Винчи, Галилея, Паскаля, Ньютона, исследовавших, в частности, ряд весьма важных гидравлических явлений, было положено серьёзное основание дальнейшему развитию гидравлики как науки. Помимо гидравлики, решением задач покоя и движения жидкостей занимается также и другая наука — теоретическая гидромеханика, развившаяся как самостоятельный раздел теоретической механики.

ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ ГИДРАВЛИКИ

При решении задач гидравлики жидкими телами, или жидкостями, в широком смысле слова, называют физические тела, легко изменяющие свою форму под действием сил самой незначительной величины. В отличие от твёрдых тел жидкости характеризуются весьма большой подвижностью своих частиц и поэтому обладают способностью принимать форму сосуда, в который они налиты. Различают два вида жидкостей: жидкости капельные и жидкости газообразные.

Капельные жидкости представляют собой жидкости в обычном, общепринятом понимании этого слова; к их числу относятся различные жидкости, встречающиеся в природе и применяемые в технике: вода, нефть, керосин и т. д. Все капельные жидкости оказывают большое сопротивление изменению объёма и трудно поддаются сжатию. При изменении давления и температуры их объём изменяется весьма незначительно.

Наоборот, газообразные жидкости (газы) изменяют свой объём в зависимости от этих же факторов в значительной степени. При решении задач гидравлики обычно изучаются капельные жидкости, в дальнейшем для краткости называемые просто жидкостями. Газообразные жидкости, их свойства и применение рассматриваются в соответствующих специальных дисциплинах — термодинамике и аэромеханике. Капельные жидкости практически не оказывают заметного сопротивления растягивающим усилиям.

Силы сцепления, существующие между молекулами таких жидкостей, проявляются только на их поверхности в виде так называемых сил поверхностного натяжения, где и обнаруживается известная сопротивляемость жидкости разрыву. Этим объясняется, например, существование тонкой плёнки мыльного пузыря, образование капли, удерживаемой от падения под действием силы тяжести, и т. п. Силы сопротивления жидкости разрыву ничтожно малы.

Поэтому при решении обычных задач гидравлики считают, что растягивающие усилия в жидкости отсутствуют. Наряду с этим следует особо подчеркнуть, что капельные жидкости оказывают существенное сопротивление сдвигающим силам, которое проявляется при движении жидкости в виде сил внутреннего трения; правильный учёт этих сил внутреннего трения при движении жидкости является одной из основных задач гидравлики.

В гидравлике жидкость рассматривается как совокупность материальных точек (частиц) в ограниченном объеме; различают твёрдые поверхности, ограничивающие объём жидкости (например, стенки и дно сосудов, заключающих жидкость), и так называемые свободные поверхности, по которым жидкость граничит с другими жидкостями или газами (например, поверхность соприкасания жидкости с воздухом в открытом сосуде).

Силы, действующие на ограниченный объём жидкости, в гидравлике, как и в теоретической механике, принято делить на внутренние и внешние.

Внутренние силы представляют собой силы взаимодействия между отдельными частицами рассматриваемого объёма жидкости; внешние силы делятся на силы поверхностные, приложенные к поверхностям, ограничивающим объём жидкости (например, силы, действующие на свободную поверхность, силы реакции стенок и дна сосудов), и силы объёмные, непрерывно распределённые по всему объёму жидкости (например, сила тяжести).

С целью облегчить и упростить решение ряда задач в гидравлике иногда пользуются понятием идеальной, или совершенной, жидкости, которая обладает абсолютной несжимаемостью, полным отсутствием температурного расширения и не оказывает сопротивления растягивающим и сдвигающим усилиям. Конечно, идеальная жидкость — жидкость фиктивная, не существующая в действительности. Все реальные, встречающиеся в природе жидкости в той или иной степени характеризуются всеми перечисленными выше свойствами.

Однако, как уже было отмечено выше, сжимаемость, температурное расширение и сопротивление растяжению для реальных жидкостей ничтожно малы и обычно не учитываются. Таким образом, основной и по существу единственной особенностью, отличающей идеальную жидкость от жидкости реальной, является наличие у последней сил сопротивления сдвигу, определяемых особым свойством жидкости — вязкостью. Ввиду этого идеальную жидкость иногда называют невязкой, а реальную жидкость — вязкой жидкостью. Встречающиеся в природе и применяемые в технике жидкости, их состояние и поведение при различных гидравлических явлениях находятся в непосредственной зависимости от таких физических свойств жидкости, как удельный вес, плотность, вязкость и т. д. Поэтому первой задачей гидравлики, предшествующей непосредственному изучению гидравлики, является определение этих физических свойств, выявление влияющих на них факторов и установление единиц их измерения.

Заказать решение           Способ оплаты

                                 Вверх

Источник: http://funnystudy.ru/gidro.html

Понравилась статья? Поделить с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: